
102309b0-8

Nicholas Allen

102309b0-8 ii

COLLABORATORS

TITLE :

102309b0-8

ACTION NAME DATE SIGNATURE

WRITTEN BY Nicholas Allen February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

102309b0-8 iii

Contents

1 102309b0-8 1

1.1 MUIPlusPlus . 1

1.2 What is MUIPlusPlus? . 2

1.3 How does it work? . 3

1.4 Creating objects . 4

1.5 Disposing objects . 4

1.6 Getting and setting attributes . 5

1.7 Calling methods . 5

1.8 Special features . 6

1.9 MUIPP_DEBUG . 6

1.10 Header file inclusion . 7

1.11 link with a link library . 7

1.12 Converting to and from BOOPSI objects . 7

1.13 Dynamically creating objects . 8

1.14 InsertBottom . 9

1.15 InsertTop . 9

1.16 InsertActive . 10

1.17 InsertSorted . 10

1.18 installation . 10

1.19 Features . 10

1.20 MUIPP_NOINLINES . 11

1.21 MUIPP_TEMPLATES . 12

1.22 Passing objects to functions . 12

1.23 Introduction to header generation . 13

1.24 The Doc2Def.rexx macro . 13

1.25 The CreateHeader.rexx macro . 14

1.26 The CreateMCCHeader.rexx macro . 15

1.27 CMUI_Object . 15

1.28 operator [] . 16

1.29 inheritance file . 16

102309b0-8 iv

1.30 .muidefs . 16

1.31 here . 17

1.32 here . 18

1.33 here . 18

1.34 here . 18

1.35 Example muidefs file . 20

1.36 Author . 21

1.37 Bugs and bug reports . 22

1.38 Shortcuts . 22

102309b0-8 1 / 22

Chapter 1

102309b0-8

1.1 MUIPlusPlus

MUIPlusPlus - A C++ interface for MUI

Developer Documentation

v1.0 by Nicholas Allen

Introduction

What~is~MUIPlusPlus?

How~does~it~work?

Installation

Features

Author

Bugs~and~bug~reports
Using MUIPlusPlus

Header~file~inclusion

Link~library

Shortcuts

Creating~objects

Disposing~objects

Dynamically~creating~objects

Getting~and~setting~attributes

Calling~methods

102309b0-8 2 / 22

Converting~to~and~from~BOOPSI~objects

Passing~objects~to~functions

Special~features

Debugging
Generating the header files

Introduction~to~header~generation

The~Doc2Def.rexx~macro

The~CreateHeader.rexx~macro

The~CreateMCCHeader.rexx~macro

1.2 What is MUIPlusPlus?

What is MUIPlusPlus?

MUIPlusPlus is a system that allows the use of MUI through C++ classes. This
document will assume you are familiar with programming the MUI system in C and
that you understand the C++ language. If this is not the case then you should
read the developer documentation that is a standard part of the MUI developer
archive and any good book on C++.

Note: This product is freeware so please feel free to copy to anyone else who
may find it useful. The author makes no guarantess, however, to the usefulness
of the product. It has been tested with GCC but not with any other compilers.

Why use MUIPlusPlus?

Although MUI is object oriented it is normally programmed from a non object
oriented language such as C. This makes programming MUI more difficult and
time consuming as the compiler has no idea of how the objects can behave and
what classes they inherit from. By using MUIPlusPlus in conjunction with a C++
compiler the compiler can find errors in your code before you start running
it. For example, you could write the following in C:

set (myListView, MUIA_List_Entries, 4);

which is clearly meaningless as the number of entries in a list is determined
by what has been inserted into the list. Using MUIPlusPlus this would not be
possible and the compiler would tell you that you cannot set the number of
entries in a list object.

Another advantage of using MUIPlusPlus is that the compiler can check the type
and number of arguments you pass to methods and attributes and ensure that
they are correct and if they are not then it will convert them automatically
if possible. For example, you could do the following in C:

BOOL isSelected;
get (myCheckmark, MUIA_Selected, &isSelected);

102309b0-8 3 / 22

if (isSelected)
{

.

.

.
}

This could actually cause your program to crash as the value retrieved using
get is always a LONG (32 bit) value and a BOOL is only 16 bits long and thus
memory will get overwritten. In MUIPlusPlus the syntax is easier and safer:

if (myCheckmark.Selected())
{

.

.

.
}

Another advantage to MUIPlusPlus is that the syntax is much shorter than in C.
For example, to insert an item in a list in C you would have to write:

DoMethod (myList, MUIM_List_InsertSingle, "Hello world!",
MUIV_List_Insert_Bottom);

and in MUIPlusPlus you could write:

myList.InsertSingle("Hello world!", MUIV_List_Insert_Bottom);

or even:

myList.InsertBottom("Hello world!");

(The
InsertBottom
method is actually an extension provided by MUIPlusPlus to

shorten the syntax of common operations).

1.3 How does it work?

How does it work?

MUIPlusPlus works by defining class definintions that describe all the methods
and attributes of the standard MUI classes. When you call one of the methods
in a particular class it simply invokes the DoMethod BOOPSI function for that
method.

All MUI classes inherit from a base class called
CMUI_Object
. This class

contains all the common features of MUI objects (for example, converting to
and from BOOPSI object pointers and supplying a simpler interface for the
object to BOOPSI function calls).

102309b0-8 4 / 22

1.4 Creating objects

Creating objects

Creating objects is rather easy in MUIPlusPlus and is as easy as declaring an
integer variable in C++. All you do is declare a variable of the class you
want with "CMUI_" at the start of the class name. For example, if you want to
declare a MUI slider object you just write:

CMUI_Slider mySlider; // Declares a MUI slider object called mySlider

This only declares an object it does not initialize it. This allows you to
declare all your objects before the muimaster.library has been opened. If you
want to declare and initialize an object at the same time you put the
initialization tag list after the object name. For example, to declare a MUI
slider object that has a minimum of 1 and maximum of 10 you would write:

CMUI_Slider mySlider (MUIA_Numeric_Min, 1,
MUIA_Numeric_Max, 10,
TAG_DONE);

If you want to declare an object but initialize it some time later then you
could do this:

CMUI_Slider mySlider;

.

.

.

mySlider = CMUI_Slider (MUIA_Numeric_Min, 1,
MUIA_Numeric_Max, 10,
TAG_DONE);

1.5 Disposing objects

Disposing objects

When you have finished using an object you need to dispose of it. Normally you
will only have to dispose the Application object as this will automatically
dispose all of its children. However, if you add and remove objects
dynamically to the application then they will need to be disposed when they
are removed. To dispose of an object you just call its Dispose method. For
example:

myApplication.Dispose();

will dispose of the application object and its children. The same syntax is
used to dispose of any kind of object.

If you dispose of an object that is connected to an application then when the
application is disposed it will get disposed twice and this will cause your
program to crash. If MUIPlusPlus is in

debug

102309b0-8 5 / 22

mode then an error message will
be generated and the object won’t be disposed.

1.6 Getting and setting attributes

Getting and setting attributes

To get an attribute from an object you call the appropriate get member
function. The get member function has the same name as the last part of the
tag name in MUI. Thus to check if a window is open or not (i.e. get its
MUIA_Window_Open attribute) you would write:

if (myWindow.Open())
{

.

.

.
}

To set an attribute you call the appropraite set member function. The set
member function has the same name as the last part of the tag name in MUI but
is peceeded by "Set". The value to set the attribute is passed as a parameter.
Thus to open a window object (i.e. set its MUIA_Window_Open attribute to TRUE)
you would write:

myWindow.SetOpen(TRUE);

1.7 Calling methods

Calling methods

Calling methods with a fixed number of arguments

To call a method just call the member function of the object with the same
name as the last part of the method tag with the parameters to the method. For
example, to call the Jump method for a List object to jump to line 10 you
would write:

myList.Jump(10); // Scroll the 10th line into view

Calling methods with a variable number of arguments

Because of the way BOOPSI has been implemented calling methods that have a
variable number of arguments cannot be called in exactly the same way as those
with a fixed number of arguments. In MUIPlusPlus you must pass an object
called sva (meaning Start Variable Args) as the first argument to the method
and then any other arguments must follow. For example, the Notify method of an
object takes a variable number of arguments. To setup a notification for an
application object to return MUIV_Application_ReturnID_Quit when a window
object is closed:

102309b0-8 6 / 22

window.Notify(sva, MUIA_Window_CloseRequest, TRUE,
app, 2, MUIM_Application_ReturnID,
MUIV_Application_ReturnID_Quit);

The only difference, therefore, is that you must pass sva as the first
parameter. If you forget to do this then the compiler will object (you will
not cause any problems in your program by forgetting to do this- it just won’t
compile).

1.8 Special features

Special features

MUIPlusPlus has a few extra methods for some classes that simplify using
them.

MUI_List class

operator~[]
Getting an entry from a list using array syntax

InsertBottom
Insert an item at the bottom of the list

InsertTop
Insert an item at the top of the list

InsertActive
Insert an item before the active entry in a list

InsertSorted
Insert an item sorted in the list

1.9 MUIPP_DEBUG

MUIPP_DEBUG

MUIPlusPlus has a debug mode that helps identify problems in your program when
you run it. To enable this debugging you need to define a macro called
MUIPP_DEBUG before inclusion of the MUIPlusplus header file. It is recommended
that you enable this whilst developing your applications and when you find
they are working correctly then disable it (by not defining it).

The debug mode will check that you have supplied all the required tags when
creating objects. It will also warn you when an object fails to create
successfully or if you try to dispose of an object that is still connected to
an application.

e.g. if you write:

CMUI_Listview myListview (TAG_DONE);

102309b0-8 7 / 22

then the following message will be printed on stderr when your program is
run:

MUIPP warning: when creating CMUI_Listview objects the MUIA_Listview_List
attribute should be supplied.

Note: Checking required tags only works for the Application, Window and
Listview classes at present.

1.10 Header file inclusion

Header file inclusion

To include the MUIPlusplus class definitions you need to include the file
<libraries/MUI.hpp>. This includes the class definitions for all standard MUI
classes. If you wish to include header files for a custom class then the file
is called <mui/classname_mcc.hpp> (e.g. <mui/HTMLtext_mcc.hpp>).

When including the header file you can define a number of macros before hand
which will affect the behaviour of the header file. These macros are listed
below:

MUIPP_NOINLINES
Define if you don’t want inlined member functions

MUIPP_DEBUG
Define to turn on debugging mode

MUIPP_TEMPLATES
Define to include template classes

1.11 link with a link library

Link library

MUIPlusPlus comes with a link library (compiled for the GCC compiler). The
source code for the link library is also included so you can compile a version
for your compiler if you do not use GCC. Using link libraries can speed up
compilation. To use a link library instead of inlining the methods define

MUIPP_NOINLINES
before inclusion of the <libraries/mui.hpp> header file.

1.12 Converting to and from BOOPSI objects

Converting to and from BOOPSI objects

Sometimes you may need to convert to and from BOOPSI objects to the C++

102309b0-8 8 / 22

objects.

Converting to BOOPSI objects

You would need to convert from a C++ object to a BOOPSI object, for example,
when you are passing a C++ object as a tag value in an initialization list for
another object. To convert to a BOOPSI object you just need to typecast it by
putting (Object *) before the object’s name:

CMUI_Window myWin (
.
.
.

MUIA_Window_Contents, (Object *)CMUI_Button ("_Ok"),
.
.
.

);

If you are actually passing it as a tag value it is better to typecast to a
tag value by putting (Tag) instead of (Object *). Because of this typecasting
you can actually treat the C++ objects just like BOOPSI object as well:

CMUI_Window myWin (......);

DoMethod (myWin, MUIM_Window_ToFront); // Call the ToFront method

although you should never need to do this.

Converting from BOOPSI objects

Converting from BOOPSI objects is also a useful thing. For example, if you
setup a notification event to call a hook function with a pointer to the
application object as the calling object you may want to convert this to a C++
application object:

void MyHookFunction (REG(a2) Object *app) {
CMUI_Application application = app;

// Now use application C++ class instead of DoMethod and get and set

.

.

.

}

1.13 Dynamically creating objects

Dynamically creating objects

Dynamically adding objects

You can dynamically add objects by calling the AddMember function. For

102309b0-8 9 / 22

example, if you create an application object like this:

CMUI_Application myApp (MUIA_Application_Author, "Nicholas Allen",
MUIA_Application_Base, "TEST",
.
.
.
);

and then later on you wish to add a window object to the application it could
be done like this:

CMUI_Window myWindow (....);

myApp.AddMember(myWindow); // Connect the window to the application

Note: This function takes a BOOPSI object pointer (so you can add objects
created in the usual MUI_NewObject way as well). Because of the automatic
coersion to BOOPSI objects you don’t have to worry if it is a C++ object or a
BOOPSI object that you pass to this function).

Dynamically removing objects

Objects can be dynamically removed by calling the RemMember function. To
remove the window from the application in the above example you would write:

myApp.RemMember(myWindow); // Remove window from application

Note: Removing objects does not dispose of them.

1.14 InsertBottom

InsertBottom

This method can be used to insert an item at the bottom of a list. It is
equivalent to calling InsertSingle with MUIV_List_Insert_Bottom. For example:

MUI_List myList;

myList.InsertBottom("Hello world!");

1.15 InsertTop

InsertTop

This method can be used to insert an item at the top of a list. It is
equivalent to calling InsertSingle with MUIV_List_Insert_Top. For example:

MUI_List myList;

myList.InsertTop("Hello world!");

102309b0-8 10 / 22

1.16 InsertActive

InsertBottom

This method can be used to insert an item before the active entry in a list.
It is equivalent to calling InsertSingle with MUIV_List_Insert_Active. For
example:

MUI_List myList;

myList.InsertActive("Hello world!");

1.17 InsertSorted

InsertSorted

This method can be used to insert an item in a list such that it is sorted. It
is equivalent to calling InsertSingle with MUIV_List_Insert_Sorted. For
example:

MUI_List myList;

myList.InsertSorted("Hello world!");

1.18 installation

Installation

Installation is fairly easy. To install the header files copy the supplied
Include directory into a path used by your compiler for header file inclusion.
Alternatively, just copy the whole archive to a directory and add the Include
directory to your compiler’s include path list (see your compiler
documentation for more details). In GCC this can be done by the following
command:

setenv CPLUS_INCLUDE_PATH Work:MUIPlusPlus/Include

assuming this archive had been unarchived to the Work: partition.

There is also a link library supplied that can be optional linked with if you
do not wish to use inline member functions. This has been compiled already for
the GCC compiler but the source code is included in case you wish to compile
it for another compiler. To install the link library for GCC just copy
libmuipp.a into GNU:lib/.

1.19 Features

Features

102309b0-8 11 / 22

* Supports all attributes and methods of MUI 3.8

* Support for NList, NListview, and HTMLtext custom classes

* Template classes supplied for List, Listview, NList, NListview

* Methods and attributes can be inlined for efficiency or linked with a
link library for faster compilation.

* Ability to convert to and from BOOPSI objects

* Extra support for List classes including AddHead, AddTail, InsertTop,
InsertBottom, Length.

* Numeric classes have coersision to ints and longs

* Includes ARexx macros for generating main header filer and header files
for custom classes from autodocs.

* Is completely free!

1.20 MUIPP_NOINLINES

MUIPP_NOINLINES

If you define MUIPP_NOINLINES before inclusion of this file then all calls to
class methods will be done directly through a link library. This can speed up
compilation time quite considerably but may make your executable slightly
larger and slower. If this is not defined then methods will be inlined and you
will not need to link with a link library at all. Thus if you write:

#define MUIPP_NOINLINES // Don’t make calls inline
#include <libraries/MUI.hpp>

int main (void)
{

.

.

.

myList.InsertSingle("An inserted item", MUIV_List_Insert_Bottom);

.

.

.
}

Then you will need to link with a link library for the call to
InsertSingle. However, if you did not define MUIPP_NOINLINES then this call
would be substituted by a call to

DoMethod (myList, MUIM_List_InsertSingle, "An inserted item",
MUIV_List_Insert_Bottom);

automatically by the compiler. This will make the code slightly faster and
eliminates the need to

link~with~a~link~library
. However, it slows down

compilation as well. During development time I define MUIPP_NOINLINES and when
my code is finished I don’t define this to optimize it (the best of both
worlds).

102309b0-8 12 / 22

1.21 MUIPP_TEMPLATES

MUIPP_TEMPLATES

If your compiler supports templates then you may wish to use the template
versions of the List, Listview, NList and NListview classes. To allow these
classes to be used you must define MUIPP_TEMPLATES before inclusion of the
<libraries/mui.hpp> header file. Please see the supplied TListview.cpp and
TNListview.cpp examples for more details.

1.22 Passing objects to functions

Passing objects to functions

Because the C++ classes for MUI are just wrapper classes, making a copy of a
C++ MUI object only copies the BOOPSI object pointer that the class
encapsulates. This means the when an object is copied onto the stack for
passing into a function it is, in effect, passed by reference instead of by
value. The function will operate on the same object that the calling function
is operating on. The following (silly) example makes this a bit clearer:

void SetStringContentsToHello (CMUI_String string)
{

string.SetContents("Hello");
}

void main (void)
{

CMUI_String myString;
CMUI_Application app
(

.

.

.
SubWindow, CMUI_Window
(

.

.

.
WindowContents, CMUI_VGroup
(

Child, myString = CMUI_String (...),
TAG_DONE

),
TAG_DONE

),
TAG_DONE

);

SetStringContentsToHello (myString);

// This will print "Hello" because the above call has changed
// myString even thoough it was not passed by reference

102309b0-8 13 / 22

printf ("Contents = %s\n", myString.Contents());

app.Dispose();
}

1.23 Introduction to header generation

Header file generation

Supplied in this archive are tree ARexx macros that can be used for generating
C++ header files for the standard MUI classes as well as for MUI custom
classes.

In order to generate a header file a
.muidefs
file needs to exist for each

class. This file describes all the attributes and methods for the class and
has the same name as the class followed by the .muidefs extension. These files
can be written by hand although a much easier and quicker solution is to use
the

Doc2Def.rexx
macro to convert an autodoc file to the

.muidefs
equivalent.

Another file, called the
inheritance~file
, then needs to be written which

describes the order in which the classes will be written to the header file
and also which classes each one inherits from. This file must be called
"Inheritance" and placed in the directory with all the other .muidefs file.

To generate a header you must then CD into the directory with these files in
and run either the

CreateHeader.rexx
or

CreateMCCHeader.rexx
macros depending

on whether you wish to generate the mui.hpp file or a header for a MCC (MUI
custom class).

1.24 The Doc2Def.rexx macro

Doc2Def.rexx macro

Note: This macro requires the rexx reqtools support available on aminet
(util/rexx/RexxReqTools.lha).

This macro can be used for converting a MUI autodoc to a
.muidefs
file. Copy

it to your Rexx: directory and to run it type:

102309b0-8 14 / 22

rx Doc2Def

Upon launching this macro will display a reqtools file requester allowing you
to select the autodocs that need to be converted. The autodoc must have one of
the following naming conventions:

MUI_<classname>.doc

or:

MCC_<classname>.doc

Any other file names will be ignored. The files will then be converted to

.muidefs
files and named <classname>.muidefs and put in the directory the

macro was originally launched from.

1.25 The CreateHeader.rexx macro

CreateHeader.rexx macro

This macro is used to generate the mui.hpp and mui.cpp files for the standard
MUI classes. Copy this macro into you Rexx: directory. To run the macro type:

rx CreateHeader <outputdir>

where outputdir is optional and specifies where the files will be stored. The
macro should be run from the directory containg the

inheritance~file
and

.muidefs
files. When this macro wites a class definition it will look for

three other types of files for each class:

<classname>.public File containing any additional code for
the class to be put in its public section.
Click

here
for example file.

<classname>.required File containing list of tag names that
determine which tags must be supplied when
creating objects of this class. A warning
will be generated at run time if one of
these tags is not supplied and debug mode
is enabled.
Click

here
for example file.

<classname>.makeobj File containing the MUIO_<name> and
parameters descriptions for calls to
MUI_MakeObject. This will allow the class

102309b0-8 15 / 22

to be constructed using MUI_MakeObject
parameters as well as tags.
Click

here
for example file.

and generate the class accordingly. Please see the Source/MainHeader directory
of this archive to see how I have done this.

1.26 The CreateMCCHeader.rexx macro

CreateMCCHeader.rexx macro

This macro can be used to create a header file for a MUI custom class. Copy it
to your Rexx: directory. To run the macro type:

rx CreateMCCHeader classname

The classname should be supplied although this is only used to determine the
name of the header file (which is classname_mcc.hpp). Other than this simple
difference this macro is used in exactly the same way as the

CreateHeader.rexx
macro and therefore needs an
inheritance~file
and

.muidefs
files. Please see

the example NList, NListview, or HTMLtext directories to see how this has been
done for these custom classes.

1.27 CMUI_Object

CMUI_Object

This is the class all MUI objects inherit from in MUIPlusPlus. It contains
support for converting to and from BOOPSI object pointers. It also suppliers a
rather useful and more convienient interface to BOOPSI function calls,
allowing the easy setting and getting of attributes and calling methods. For
example, if we have a CMUI_Window object and we wish to get its
MUIA_Window_Open attribute we could write:

BOOL isOpen = (BOOL)myWindow.GetAttr(MUIA_Window_Open);

Note: This is only an example, in reality it would be neater to use the
following syntax:

BOOL isOpen = myWindow.Open();

The CMUI_Object class can be used for calling methods as well:

myWindow.DoMethod(MUIM_Window_ToFront);

102309b0-8 16 / 22

1.28 operator []

operator []

You can treat a CMUI_List, CMUI_Listview, CMUI_NList, CMUI_NListview objects
just like arrays in C. For example:

APTR entry = myList[10]; // Get the 11th entry form a list

Remember that the index is 0 based like in C arrays. If
debug~mode
is turned

on the a warning will be generated if the index is out of range.

1.29 inheritance file

Inheritance file:

This file is crucial when building the header files using the

CreateHeader.rexx
and

CreateMCCHeader.rexx
macros. It lists all classes that

need to be defined and also which classes they inherit from. Each class must
be on a seperate line and be followed (on the same line) by the names of the
classes it inherits from. If more than one class is specified for inheritance
then the first one will be used for C++ inheritance and the other classes will
be aggregatated into the class. There are a few useful keywords that can be
used in the file:

include <filename> This will cause a verbatim include of the
named file into the generated header.

comment <filename> This will cause the named file to be includes
into the header file but as a comment.

end <filename> This will cause the named file to be included
at the very end of the header file.

The inheritance file must be named "Inheritance" and stored in the same
directory as the

.muidefs
files. To view the Inheritance file for the standard

MUI classes click
here
.

1.30 .muidefs

.muidefs files:

102309b0-8 17 / 22

These files describe all the attributes and methods for a particular class.
The files should be named <classname>.muidefs (e.g. Window.muidefs). The file
can be written by hand but it is probably easier and more convienient to use
the

Doc2Def.rexx
macro.

Click
here
to view an example muidefs file.

1.31 here

This is the contents of the List.public file:

// By overloading the [] operator you can treat lists like arrays

APTR operator [] (LONG pos)
{

APTR entry;
DoMethod (MUIM_List_GetEntry, pos, &entry);
return entry;

}

// This method is a convienient alternative to the Entries attribute

LONG Length (void) const
{

return (LONG)GetAttr (MUIA_List_Entries);
}

// This method can be used to retrieve the number of selected entries
// in a list

ULONG NumSelected (void)
{

ULONG numSelected;
DoMethod (MUIM_List_Select, MUIV_List_Select_All,

MUIV_List_Select_Ask, &numSelected);
return numSelected;

}

// These methods can be used as shortcuts for inserting objects into
lists

void AddHead (APTR entry)
{

DoMethod (MUIM_List_InsertSingle, entry, MUIV_List_Insert_Top);
}

void AddTail (APTR entry)
{

DoMethod (MUIM_List_InsertSingle, entry, MUIV_List_Insert_Bottom);
}

102309b0-8 18 / 22

void InsertTop (APTR entry)
{

DoMethod (MUIM_List_InsertSingle, entry, MUIV_List_Insert_Top);
}

void InsertBottom (APTR entry)
{

DoMethod (MUIM_List_InsertSingle, entry, MUIV_List_Insert_Bottom);
}

void InsertSorted (APTR entry)
{

DoMethod (MUIM_List_InsertSingle, entry, MUIV_List_Insert_Sorted);
}

void InsertActive (APTR entry)
{

DoMethod (MUIM_List_InsertSingle, entry, MUIV_List_Insert_Active);
}

Note: The file should not be indented

1.32 here

This is the contents of the Application.required file:

MUIA_Application_Author
MUIA_Application_Base
MUIA_Application_Copyright
MUIA_Application_Description
MUIA_Application_Title
MUIA_Application_Version

Note: The file should not be indented.

1.33 here

This is the Slider.makeobj file:

MUIO_Slider
STRPTR label, LONG min, LONG max

Note: The file should not be indented.

1.34 here

The standard inheritance file for MUI (file should not be indented):

; Inheritance file for use with CreateHeader.rexx
; Creates main MUI header and library source files

102309b0-8 19 / 22

; Author: Nicholas Allen

comment HeaderComment
include HeaderStart
end HeaderEnd
abstract Notify Object
abstract Family Notify
Menustrip Family
Menu Family
Menuitem Family
Application Notify
Window Notify
Aboutmui Window
abstract Area Notify
Rectangle Area
Balance Area
Image Area
Bitmap Area
Bodychunk Bitmap
Text Area
abstract Gadget Area
String Gadget
Boopsi Gadget
Prop Gadget
Gauge Area
Scale Area
Colorfield Area
List Area
Floattext List
Volumelist List
Scrmodelist List
Dirlist List
abstract Numeric Area
Knob Numeric
Levelmeter Numeric
Numericbutton Numeric
Slider Numeric
abstract Framedisplay Area
abstract Popframe Framedisplay
abstract Imagedisplay Area
abstract Popimage Imagedisplay
Pendisplay Area
Poppen Pendisplay
Group Area
abstract Mccprefs Group
Register Group
abstract Penadjust Register
abstract Settingsgroup Group
abstract Settings Group
abstract Frameadjust Group
abstract Imageadjust Group
Virtgroup Group
Scrollgroup Group
Scrollbar Group
Listview List Group
Radio Group
Cycle Group

102309b0-8 20 / 22

Coloradjust Group
Palette Group
Popstring Group
Popobject Popstring
Poplist Popobject
Popscreen Popobject
Popasl Popstring
Semaphore Object
Applist Semaphore
Dataspace Semaphore
abstract Configdata Dataspace

; These are not standard MUI classes but have makeobj files for
; creating them.

Label Text
Button Text
Checkmark Image
HSpace Rectangle
VSpace Rectangle
HBar Rectangle
VBar Rectangle
BarTitle Rectangle

1.35 Example muidefs file

This is the .muidiefs file for the MUI application class (should not be
intented):

attribute MUIA_Application_Active Active N ISG BOOL
attribute MUIA_Application_Author Author N I.G STRPTR
attribute MUIA_Application_Base Base N I.G STRPTR
attribute MUIA_Application_Broker Broker N ..G CxObj *
attribute MUIA_Application_BrokerHook BrokerHook N ISG struct Hook *
attribute MUIA_Application_BrokerPort BrokerPort N ..G struct MsgPort *
attribute MUIA_Application_BrokerPri BrokerPri N I.G LONG
attribute MUIA_Application_Commands Commands N ISG struct MUI_Command *
attribute MUIA_Application_Copyright Copyright N I.G STRPTR
attribute MUIA_Application_Description Description N I.G STRPTR
attribute MUIA_Application_DiskObject DiskObject N ISG struct DiskObject

*
attribute MUIA_Application_DoubleStart DoubleStart N ..G BOOL
attribute MUIA_Application_DropObject DropObject N IS. Object *
attribute MUIA_Application_ForceQuit ForceQuit N ..G BOOL
attribute MUIA_Application_HelpFile HelpFile N ISG STRPTR
attribute MUIA_Application_Iconified Iconified N .SG BOOL
attribute MUIA_Application_Menu Menu O I.G struct NewMenu *
attribute MUIA_Application_MenuAction MenuAction N ..G ULONG
attribute MUIA_Application_MenuHelp MenuHelp N ..G ULONG
attribute MUIA_Application_Menustrip Menustrip N I.. Object *
attribute MUIA_Application_RexxHook RexxHook N ISG struct Hook *
attribute MUIA_Application_RexxMsg RexxMsg N ..G struct RxMsg *
attribute MUIA_Application_RexxString RexxString N .S. STRPTR
attribute MUIA_Application_SingleTask SingleTask N I.. BOOL
attribute MUIA_Application_Sleep Sleep N .S. BOOL

102309b0-8 21 / 22

attribute MUIA_Application_Title Title N I.G STRPTR
attribute MUIA_Application_UseCommodities UseCommodities N I.. BOOL
attribute MUIA_Application_UseRexx UseRexx N I.. BOOL
attribute MUIA_Application_Version Version N I.G STRPTR
attribute MUIA_Application_Window Window N I.. Object *
attribute MUIA_Application_WindowList WindowList N ..G struct List *
method MUIM_Application_AboutMUI AboutMUI N Object *refwindow
method MUIM_Application_AddInputHandler AddInputHandler N struct

MUI_InputHandlerNode *ihnode
method MUIM_Application_CheckRefresh CheckRefresh N
method MUIM_Application_GetMenuCheck GetMenuCheck O ULONG MenuID
method MUIM_Application_GetMenuState GetMenuState O ULONG MenuID
method MUIM_Application_Input Input O LONGBITS *signal
method MUIM_Application_InputBuffered InputBuffered N
method MUIM_Application_Load Load N STRPTR name
method MUIM_Application_NewInput NewInput N LONGBITS *signal
method MUIM_Application_OpenConfigWindow OpenConfigWindow N ULONG flags
method MUIM_Application_PushMethod PushMethod N Object *dest, LONG count,

/* ... */
method MUIM_Application_RemInputHandler RemInputHandler N struct

MUI_InputHandlerNode *ihnode
method MUIM_Application_ReturnID ReturnID N ULONG retid
method MUIM_Application_Save Save N STRPTR name
method MUIM_Application_SetConfigItem SetConfigItem N ULONG item, APTR

data
method MUIM_Application_SetMenuCheck SetMenuCheck O ULONG MenuID, LONG

stat
method MUIM_Application_SetMenuState SetMenuState O ULONG MenuID, LONG

stat
method MUIM_Application_ShowHelp ShowHelp N Object *window, char *name,

char *node, LONG line

1.36 Author

MUIPlusPlus was written by Nicholas Allen. If you have any queries on this
product then you can write to me (note I am going away to Australia for a year
from May 3rd 97 and so will not be available during this time):

My email address is:

nick@carlton-castel.demon.co.uk.

My postal address is:

Nicholas Allen
"Carlton Lodge"
Rue Presbytere
Castel
Guernsey

Hope this is useful to you!

102309b0-8 22 / 22

1.37 Bugs and bug reports

Bugs and bug reports

Although this product has been tested with GCC there may be problems with
other compilers or problems with GCC that I have not noticed. If you find a
problem then you can either fix it yourself or send

me
a report of the problem

and I will try to fix it (please note - I am unavailable from May 3rd 97).

1.38 Shortcuts

Shortcuts

Because of name clashes of some of MUI’s shortcuts the standard MUI shortcuts
are not available. Most of them have been redefined in the <libraries/mui.hpp>
file though. The main difference between these shortcuts and the normal ones
is that to create an object instead of writing <classname>Object you write
<classname>Obj (eg instead of WindowObject you write WindowObj).

	102309b0-8
	MUIPlusPlus
	What is MUIPlusPlus?
	How does it work?
	Creating objects
	Disposing objects
	Getting and setting attributes
	Calling methods
	Special features
	MUIPP_DEBUG
	Header file inclusion
	link with a link library
	Converting to and from BOOPSI objects
	Dynamically creating objects
	InsertBottom
	InsertTop
	InsertActive
	InsertSorted
	installation
	Features
	MUIPP_NOINLINES
	MUIPP_TEMPLATES
	Passing objects to functions
	Introduction to header generation
	The Doc2Def.rexx macro
	The CreateHeader.rexx macro
	The CreateMCCHeader.rexx macro
	CMUI_Object
	operator []
	inheritance file
	.muidefs
	here
	here
	here
	here
	Example muidefs file
	Author
	Bugs and bug reports
	Shortcuts

